Sains Malaysiana 53(8)(2024): 1777-1785

http://doi.org/10.17576/jsm-2024-5308-05

 

Larut-Lesap Biologi Kaolin menggunakan Siderofor daripada Bacillus aryabhattai dan Bacillus megaterium

(Bioleaching of Kaolin with Siderophores from Bacillus aryabhattai and Bacillus megaterium)

 

HUSNA ALYA MOHD RANI1, ADNAN AZMI1, MUHAMMAD AHMAD ZAN1, MONISHA RAJAMOHAN2, KUAN SENG HOW2,3 & SYLVIA CHIENG1,*

 

1Jabatan Sains Biologi dan Bioteknologi, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2Jabatan Kejuruteraan Mekanikal dan Bahan, Fakulti Kejuruteraan dan Sains Lee Kong Chian, Universiti Tunku Abdul Rahman, Kampus Sg Long, 43000 Kajang, Selangor, Malaysia

3Pusat Penyelidikan Bahan Termaju dan Mampan, Universiti Tunku Abdul Rahman, Kampus Sg Long, 43000 Kajang, Selangor, Malaysia

 

Received: 30 April 2024/Accepted: 26 June 2024

 

Abstrak

Kehadiran cemaran besi di dalam kaolin secara signifikannya mengurangkan nilai komersialnya, kerana besi memberi kesan negatif terhadap indeks keputihan dan sifat refaktori kaolin tersebut. Walaupun kaedah penulenan kaolin secara fizikal dan kimia adalah berkesan, tetapi kaedah ini mempunyai beberapa kelemahan seperti kos yang tinggi dan pencemaran alam sekitar. Oleh itu, penyelidikan ini dijalankan untuk mencadangkan kaedah baharu yang mesra alam serta boleh diaplikasi dalam skala yang lebih besar dalam industri bagi penulenan kaolin. Dalam kajian ini, siderofor Bacillus aryabhattai dan Bacillus megateriumyang ditulenkan secara separa digunakan untuk proses larut-lesap kaolin. Hasil kajian mendapati bahawa kedua-dua siderofor mampu mengeluarkan cemaran besi daripada sampel tanah liat kaolin. Melalui analisis spektroskopi sinar-X serakan tenaga (EDX), peratus berat besi di dalam kaolin telah menunjukkan penurunan sebanyak 48.2% bagi siderofor B. aryabhattai dan 50.6% bagi siderofor B. megaterium. Selain itu, analisis mikroskop elektron pengimbas (SEM) pula menunjukkan struktur lapisan kaolin kelihatan masih terpelihara dan menyamai morfologi kaolin mentah. Hasil kajian ini menunjukkan keberkesanan proses larut-lesap menggunakan siderofor B. aryabhattai dan B. megaterium dalam mengurangkan cemaran besi daripada kaolin.

 

Kata kunci: Bacillus aryabhattai; Bacillus megaterium; kaolin; larut-lesap; siderofor

 

Abstract

The presence of iron impurities in kaolin significantly diminishes its commercial value, owing to the adverse effects of iron on both the whiteness index and refractory properties of the kaolin. While physical and chemical methods for kaolin purification are known to be effective, they come with notable drawbacks such as high costs and environmental pollution. Consequently, this study was undertaken to propose a novel, environmentally sustainable method capable of large-scale implementation in the industry for refinement of kaolin. In this study, partially purified siderophores from Bacillus aryabhattai and Bacillus megaterium were used in the bioleaching process of kaolin. Results showed that both siderophores were able to remove iron impurities from the kaolin clay samples. Energy Dispersive X-ray Spectroscopy (EDX) analysis showed a reduction in the weight percentage of iron in the kaolin by 48.2% for B. aryabhattai siderophore and 50.6% for B. megaterium siderophore. Additionally, Scanning Electron Microscopy (SEM) analysis confirmed the preservation of the layered structure of kaolin, resembling the morphology of raw kaolin. These findings underscore the efficacy of bioleaching utilizing siderophores from B. aryabhattai and B. megaterium in effectively reducing iron impurities from kaolin.

Keywords: Bacillus aryabhattai; Bacillus megaterium; bioleaching; kaolin; siderophore

 

REFERENCES

Alfonso, P., Penedo, L.A., García-Valles, M., Martínez, S., Martínez, A. & Trujillo, J.E. 2022.  Thermal behaviour of kaolinitic raw materials from San José (Oruro, Bolivia). J. Therm. Anal. Calorim. 147(9): 5413-5421.

Claassens, N.J., Burgener, S., Vigeli, B., Erb, T.J. & Bar-Even, A. 2019. A critical comparison of cellular and cell-free bioproduction systems. Curr. Opin. Biotechnol. 60: 221-229.

Cuadros, J. 2017. Clay minerals interaction with microorganisms: A review. Clay Miner. 52: 235-261.

Gao, X., Jiang, L., Mao, Y., Yao, B. & Jiang, P. 2021. Progress, challenges, and perspectives of bioleaching for recovering heavy metals from mine tailings. Adsorpt. Sci. Technol. 2021: 9941979.

Gupta, V., Saharan, K., Kumar, L., Gupta, R., Sahai, V. & Mittal, A. 2008. Spectrophotometric ferric ion biosensor from Pseudomonas fluorescens culture. Biotechnol. Bioeng. 100(2): 284-296.

Hajihoseini, J. & Fakharpour, M. 2019. Effect of temperature on bioleaching of iron impurities from kaolin by Aspergillus niger fungal. J. Asian Ceram. Soc. 7(1): 82-89.

Hosseini, M.R. & Ahmadi, A. 2015. Biological beneficiation of kaolin: A review on iron removal. Appl. Clay Sci. 107: 238-245.

Jing, H., Liu, Z., Kuan, S.H., Chieng, S. & Ho, C.L. 2021. Elucidation of Gram-positive bacterial iron(III) reduction for kaolinite clay refinement. Molecules 26(11): 3084.

Kawanishi, M., Yoneda, R., Totsuka, Y. & Yagi, T. 2020. Genotoxicity of micro- and nanoparticles of kaolin in human primary dermal keratinocytes and fibroblasts. Genes Environ. 42: 16.

Khan, A., Singh, P. & Srivastava, A. 2018. Synthesis, nature and utility of universal iron chelator-siderophore: A review. Microbiol. Res. 212: 103-111.

Khasheii, B., Mahmoodi, P. & Mohammadzadeh, A. 2021. Siderophores: Importance in bacterial pathogenesis and applications in medicine and industry. Microbiol. Res. 250: 126790.

Lee, S.Y., Yong, S.N., Kuan, S.H. & Chieng, S. 2022. Perbandingan penghasilan siderofor daripada Bacillus aryabhattai, Bacillus megaterium dan Bacillus cereus. Sains Malaysiana 51(9): 3069-3079.

Meyer, J.M. & Abdallah, M.A. 1978. The fluorescent pigment of Pseudomonas fluorescens: Biosynthesis, purification and physicochemical properties. J. Gen. Microbiol. 107(2): 319-328.

Navarrete, C., Jacobson, I.H., Martinezz, J.L. & Procentese, A. 2020. Cell factories for industrial production processes: current issues and emerging solutions. Processes 8(7): 768.

Osman, Y., Gebrell, A., Mowafy, A.M., Anan, T.I. & Hamed, S.M. 2019. Characterization of Aspergillus niger siderophore that mediates bioleaching of rare earth elements from phosphorites. World J. Microbiol. Biotechnol. 35: 93.

Payne, S.M. 1994. Detection, isolation, and characterization of siderophores. Methods Enzymol. 235: 329-344.

Raji, M., Qaiss, A.K. & Bouhfid, R. 2020. Effects of bleaching and functionalization of kaolinite on the mechanical and thermal properties of polyamide 6 nanocomposites. RSC Adv. 10: 4916-4926.

Řezanka, T., Palyzová, A., Faltýsková, H. & Sigler, K. 2019. Siderophores: Amazing metabolites of microorganisms. Studies in Natural Products Chemistry 60: 157-188.

Sánchez-Palencia, Y., Bolonio, D., Ortega, M.F., García-Martínez, M.J., Ortiz, J.E., Rayo, F., Arregui, L., Serrano, S., Llamas, J.F. & Canoira, L. 2022. Iron removal from kaolin waste dumps by chemical (oxalic and citric acids) and biological (Bacillus strain) leaching. Clays and Clay Miner. 70(3): 386-404.

Srimathi, K. & Suji, H.A. 2018. Siderophores detection by using blue agar CAS assay methods. Int. J. Sci. Res. Biol. Sci. 5(6): 180-185.

Timofeeva, A.M., Galyamova, M.R. & Sedykh, S.E. 2022. Bacterial siderophores: Classification, biosynthesis, perspectives of use in agriculture. Plants (Basel) 11(22): 3065.

Vardanyan, A. & Vyrides, I. 2019. Acidophilic bioleaching at high dissolved organic compounds: Inhibition and strategies to counteract this. Miner. Eng. 143: 105943.

Vilkhovoy, M., Adhikari, A., Vadhin, S. & Varner, J.D. 2020. The evolution of cell free biomanufacturing. Processes 8(6): 675.

Williamson, A.J., Folens, K., Matthijs, S., Cortes, Y.P., Varia, J., Laing, G.D., Boon, N. & Hennebel, T. 2021. Selective metal extraction by biologically produced siderophores during bioleaching from low-grade primary and secondary mineral resources. Miner. Eng. 163: 106774.

Yap, H.J., Yong, S.N., Cheah, W.Q., Chieng, S. & Kuan, S.H. 2020. Bioleaching of kaolin with Bacillus cereus: Effect of bacteria source and concentration on iron removal. J. Sustain. Sci. Manage 15(4): 91-99.

Yong, S.N., Lim, S., Ho, C.L., Chieng, S. & Kuan, S.H. 2022. Mechanisms of microbial-based iron reduction of clay minerals: Current understanding and latest developments. Appl. Clay Sci. 228: 106653.

Yong, S.N., Lee, W.S., Chieng, S., Lim, S. & Kuan, S.H. 2023. Impact of Bacillus species on Fe reduction of kaolin in bioleaching: Surface, structural, and chemical studies. Appl. Microbiol. Biotechnol. 107: 4789-4801.

Yu, S., Teng, C., Bai, X., Liang, J., Song, T., Dong, L., Jin, Y. & Qu, J. 2017. Optimization of siderophore production by Bacillus sp. PZ-1 and its potential enhancement of phytoextration of PB from soil. J. Microbiol. Biotechnol. 27(8): 1500-1512.

Zegeye, A., Yahaya, S., Fialips, C.I., White, M.L., Gray, N.D. & Manning, D.A.C. 2013. Refinement of industrial kaolin by microbial removal of iron-bearing impurities. Appl. Clay Sci. 86(1): 47-53.

Zhao, H., Zhang, Y., Zhang, X., Qian, L., Sun, M., Yang, Y., Zhang, Y., Wang, J., Kim, H. & Qiu, G. 2019. The dissolution and passivation mechanism of chalcopyrite in bioleaching: An overview. Miner. Eng. 136: 140-154.


*Corresponding author; email:
sylvia@ukm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next